Mesenchymal Stem Cells For Cardiovascular Diseases
Despite progress in cardiovascular research, cardiac pathology continues to be one of the most common causes of morbidity and mortality in the world. Stem cell-based therapy has been recognized as an innovative strategy for the repair, regeneration and functional recovery of the myocardium, hence, once the animal research stage has been overcome, most clinical trials aimed at evaluating the safety and effectiveness of regenerative medicine in cardiovascular diseases have focused on angina pectoris, myocardial infarction and chronic cardiomyopathy. Although the current evidence of benefit is not conclusive, the evidence in favor of favorable results is growing.
In some cases, stem cell therapy can provide an effective treatment or alternative for diseases or disorders for which there is no effective treatment. Because these cells are capable of dividing into a wide range of lineages and tissues, they can be used to treat various diseases by repairing, replacing, and regenerating tissues.
It is unclear how umbilical cord mesenchymal stem cells act on the heart, but previous studies have shown that they possess an anti-apoptotic effect. The induced cardiomyocytes can form discs interspersed with myocytes from the host cells, creating a functional syncytium that will help contract the heart. Mesenchymal stem cells can improve cardiac function and reduce damage caused by cardiovascular disease, since they stimulate endogenous repair mechanisms, the regulation of the immune response, tissue perfusion and the proliferation of the resident heart rate, thereby improving cardiac function and reducing damage severity.
Refractory angina
This syndrome, characterized by persistent angina despite standard medical treatment, is often not revascularized due to diffuse coronary lesions or severe comorbidities.
In 2017, a review included 13 clinical studies, with 1061 patients and 12 months of follow-up on average, indicating cell therapy has emerged as a tool for managing these patients. Although the available data are inconclusive, the authors conclude that stem cell-based therapy could be a viable addition to conventional treatment options for refractory angina, given the paucity of therapeutic alternatives.
There was a reduction in mortality at two years after a meta-analysis in 2018, involving 304 patients, showed improved exercise tolerance and reduced angina attack frequency at three, six and 12 months. An additional meta-analysis published in March 2019, involving 526 patients monitored for 14 months, showed that patients treated with stem cells had fewer serious adverse effects, fewer deaths, fewer angina attacks, and fewer antianginal medications than those treated with conventional management.
A third meta-analysis from 2019, with 269 patients and 15 months of follow-up on average, reports the following results: decreased all-cause mortality, decreased frequency of angina and increased exercise time, with no increase in adverse reactions.
Cardiomyopathy (ischemic and non-ischemic)
Despite optimal medical and surgical management, many patients with heart failure undergo long-term myocardial remodeling that does not allow them to restore their ventricular function. This is because current treatment protocols cannot reverse the loss of cardiomyocytes due to cardiomyopathy. Since inflammatory responses continue over time as a central mechanism in the development of heart failure, it was of interest to investigate the anti-inflammatory, antifibrotic, and immunomodulatory properties of stem cells in patients with ischemic and non-ischemic cardiomyopathy.
In a review of five clinical studies published between 2017 and 2018, including 605 patients, the authors conclude that cell therapy is safe, causes immunomodulatory effects, improves functional capacity, and adds clinical benefits to standard therapies. According to them, the results are promising, and further evidence strengthening is recommended.
Based on a meta-analysis published in May 2019, involving 20 investigations and 1418 patients evaluated for an average of 21 months, stem cells improved cardiac function indicators (LVEF and LVESV), walking distance, functional classification of heart failure, quality of life, and mortality as compared to controls. Hospitalizations and serious adverse events were not different from those in the control group.
In a recent review of 9 studies involving 612 patients with heart failure, improvement was found in clinical and paraclinical parameters, evaluated on average for 9 months. According to the authors, stem cells are an effective therapy for the treatment of heart failure, improving patient prognosis and ability to exercise.
Acute myocardial infarction (AMI)
The application of stem cells was associated with a significant increase in left ventricular ejection fraction (LVEF) and other variables indicative of improved ventricular function and modification of remodeling in patients with AMI receiving timely percutaneous coronary intervention (PCI) and conventional medication in different studies. Even coronary artery bypass grafting with stem cells offers greater benefits. A number of studies have also shown that intravenous administration could be a more efficient and effective method of treating the heart or coronary arteries than direct application, with logistic, safety, and cost advantages.
Stem cell therapy is evidenced to be a safe way to treat cardiovascular diseases, as it shows an anti-apoptotic effect, reduction of lesion size, improvement of cardiac function through regulation of the immune response, adequate tissue perfusion and activation of growth factors.
We still need to explore a lot of ground, in terms of these and other conditions. You can learn more about regenerative medicine and stem cells by enrolling in our international certification program at www.issca.us
- Published in Blog
Atherosclerosis obliterans grade IV: Application of Autologous Stem Cells
Atherosclerosis is the most common form of arterial occlusive disease in adults. About 15 percent of adults over 55 years of age suffer from critical ischemia, the most severe form of this disease.
Due to the gradual aging of the population and the growing number of people in their third age group, a number of studies have been conducted in order to improve the prognosis of atherosclerosis obliterans and to find alternatives to the mutilation of the extremities. As a general rule, chronic ischemia of the lower limbs should be treated to alleviate symptoms, particularly pain, prevent disease progression, and reduce the rate of amputations. In most patients with critical ischemia, the main goal is to preserve the affected limb.
The development of regenerative medicine is closely linked to the development of new knowledge about embryonic and adult stem cells, as well as the regenerative and therapeutic potential of stem cell therapy. The use of adult stem cells in the treatment of peripheral artery diseases has been demonstrated as a therapeutic agent for inducing angiogenesis. Recent preclinical studies as well as the pioneering clinical studies indicate that bone marrow-derived mononuclear cells (MBMCs) can enhance tissue vascularization in ischemic limbs, with results similar to those obtained with peripheral blood stem cells supply.
Cuba presented the first studies carried out in 2004 at the Institute of Hematology of the “Enrique Cabrera” hospital in Havana City, which achieved encouraging clinical results and had very few adverse effects in recent years.
A progressive rise in the accumulated experience with stem cells was also observed in Pinar del Rio in 2005, as the first 10 cases were carried out. The rising ease of obtaining this type of cell has made research and applications with these cells advance rapidly with great expectations in terms of clinical application.
A study published by Dia-Diaz, et al. in the Journal of Medical Sciences of Pinar del Rio examined 296 patients with grade IV atherosclerosis obliterans between 2009 and 2019. During the study, autologous stem cells were injected intramuscularly from peripheral blood. Within four weeks, pain relief was observed, as well as an increase in the pain-free claudication distance. Angiography after treatment revealed collateral vessel formation. The limb was saved in 201 patients (68%), while 95 cases (32%) presented amputation criteria. Complications were not reported following the procedure.
The study demonstrated the effectiveness of the implantation of autologous stem cells obtained from peripheral blood, as well as the favorable evolution of patients, clinical improvement of rest pain, walking distance without claudication and ankle-brachial pressure index.
We still need to explore a lot of ground, in terms of these and other conditions. You can learn more about regenerative medicine and stem cells by enrolling in our international certification program at www.issca.us
- Published in Blog
The emerging role of MSC-derived exosomes in Regenerative Medicine
In recent years, MSCs have been introduced as respectable candidates for regenerative medicine due to their pro-angiogenic, anti-apoptotic, and immunomodulatory attributes. A variety of human tissues can be used as a source of mesenchymal stem/stromal cells (MSCs), ranging from bone marrow (BM) to umbilical cord (UC). These cells are typically multipotent and can differentiate into a variety of cell types. MSCs have been studied extensively for potential applications in cardiomyopathy, neurodegenerative disorders, spinal cord injuries (SCI), kidney injuries, liver injuries, lung injuries, and even cancer. According to current research, MSC-derived extracellular vesicles (EVs) contribute to MSC-exerted therapeutic benefits.
As defined by the International Society for Extracellular Vesicles (ISEV), EVs are lipid bilayer particles secreted by cells that do not replicate. EVs can be categorised into three subclasses based on size and biogenesis procedures: surrounding exosomes (50-150 nm), microvesicles (MVs) (100-1000 nm), and apoptotic bodies (ApoBDs) (500-5000 nm). In order for exosomes to be produced, multiple steps must occur; endosomes must be created from the plasma membrane, intraluminal vesicles must be formed within multivesicular bodies by inward budding, the MVB must merge with the plasma membrane, and finally the internal vesicles must be released.
By transmitting their molecules, such as proteins, messenger RNA (mRNA), and microRNAs (miRNAs), MSC exosomes stimulate phenotypic changes and subsequently modify regenerative programs of target organs. A number of mechanisms are involved in phenotypic alterations, including prevention of apoptosis, cell proliferation, immunomodulatory reactions, attenuation of oxidative stress, and improving oxygen supply to recipient cells. By supporting mitochondrial transfer, MSC-exosomes can suppress inflammatory cytokine production and induce phenotype 2 alveolar macrophages (M2), leading to acute lung injury (ALI) rescue. It has been demonstrated that the transmission of miRNAs from MSC-exosomes to recipient cells is responsible for the restoration of damaged kidneys, hearts, livers, and brains
Various cells continuously form and secrete exosomes, including lymphocytes, platelets, mast cells, intestinal epithelium, dendritic cells, neoplastic cell lines, microglia, neurons, and MSCs. Studies have shown that exosomes play an important role in cell-to-cell communication as well as several physiological and pathological processes. Despite their inherent biological activities, exosomes have recently been introduced as encouraging drug carriers because of their small size, high biocompatibility, and ability to hold different therapeutic ingredients, including proteins, nucleic acids, and small molecules. There have been reports showing the usefulness of MSCs-exosomes for treating a variety of ailments, such as lung, kidney, liver, neurodegenerative, cardiac, and musculoskeletal diseases, as well as skin wounds in vivo.
As well as their remarkable therapeutic effects, MSC-EVs derived from diverse sources also possess a variety of physiological functions that may affect their therapeutic application. In a wide range of human disorders, MSC-exosomes are considered an effective alternative to whole-cell therapy because of their low immunogenicity and improved safety profile. Although MSC-exosome applications still face various challenges, their benefits and capabilities are attracting increasing interest.
To learn more about stem cells, exosomes and keep up to date with all the information about regenerative medicine and its advances, sign up for our international certification in regenerative medicine at www.issca.us
- Published in Blog
Applications of Exosomes in Regenerative Medicine
In recent years, the application of exosomes in regenerative medicine has been growing. Also, many more potential applications of exosomes in regenerative medicine are still being studied.
In this article, you’ll learn the functions of exosomes and up-to-date applications of exosomes in regenerative medicine.
What are exosomes?
Exosomes are tiny vesicles that play a crucial role in cell to cell communication. Every cell in our body produces exosomes, to give information to the neighboring cells or long-distance cells, to change their behavior or to simply share information.
They transfer genetic information, proteins, and receptors, and they are capable of changing the behavior of one cell to the other. They have the ability to increase cell replication and other substances crucial for tissue regeneration.
Functions of exosomes
The major function of exosomes is to improve intercellular communication by releasing effectors and signaling molecules between cells.
Every cell in our body produces exosomes, to give information to the neighboring cells, or long distance cells, to change their behavior or to simply share information.
They transfer genetic information, proteins, and receptors, and are capable of changing the behavior of one cell to the other. They can increase cell replication and other substances crucial for tissue regeneration.
Exosomes affect all aspects of cell biology and are useful for improving intercellular communication.
Various applications of exosomes in regenerative medicine.
Exosomes have various clinical applications due to their high potency, reduced immunogenicity, and ability to cross physiological barriers such as the blood-brain barrier.
In regenerative medicine, exosomes can be used in a point of care environment for a lot of aesthetic and therapeutic purposes.
The Use of Exosomes in Hair therapy
Exosomes can be used in the early stages of hair loss to re-grow and regenerate hair.
The good thing about using exosomes for hair loss is that they can be used in both men and women.
Exosomes can help stimulate hair growth and prevent hair loss. Clinical results have also shown the efficacy of exosomes in alopecia areata.
Exosomes from follicular stem cells are said to inhibit hair loss and promote hair growth.
In the earlier stages of hair loss, hair can be regrown and regenerated in men and women by administering exosomes and growth factors.
After the first round of exosome therapy, noticeable change can be seen in 2 or 3 months but the most significant changes start from 6 to 12 months.
The Use of Exosomes in Skin-Regeneration
There are so many research and clinical trials surrounding the application of exosomes in skin treatment.
The benefits of exosome therapy in skin regeneration because of their ability to directly stimulate target cells, non-immune rejection and high stability.
These are some of the abilities of exosomes in skin regeneration:
- Regulation of inflammation
- Synthesis of collagen
- Angiogenic effect
The Anti-aging effect of exosomes
Exosomes can be used to restore aging tissues of the body due to their outstanding regenerative ability.
Signs of aging manifest due to the skin’s inability to regenerate itself, exosomes can help to maintain the skin’s elasticity and strength.
Exosome therapy is changing the approach to anti-aging treatment. The rejuvenation capability of exosomes is a great way to make your patients feel young again.
It revitalizes senescent cells by repairing damage due to aging.
With exosomes, you are improving longevity by reversing the cells that are dying due to aging.
Exosomes in Pain management
Exosome therapy can be used to relieve pain by subduing pain signals, reducing inflammation and repairing damaged tissues.
The application of Exosome in inflammatory conditions.
Exosomes can decrease inflammation, regenerate cells and modulate the immune system.
Osteoarthritis: MSC-derived exosomes can reduce the joint inflammation in osteoarthritis and also stimulates cartilage regeneration and the repair of damaged tissues.
Tendinitis: Tendinitis is the inflammation of tendons. Exosomes can reduce the inflammation associated with tendinitis and repair torn tendons and muscles.
Due to the potency of exosomes and its paracrine effect, the potential capabilities of exosomes are still being discovered and studied.
At Cellgenic, we prepare easy to transport and administer Lyophilized exosomes, suitable for use in regenerative medicine.
- Published in Blog
Why cellular therapies have become a standard in clinics that are betting on biological medicine
Cellular therapy is fast becoming a standard therapy in many regenerative clinics today. Many doctors are no longer questioning the safety and effectiveness of stem cell therapy. This is because various stem cell studies are already describing the benefits of stem cells for patients who are living with chronic and autoimmune health conditions.
This article will be talking about why stem cell therapy have become a standard therapy in clinics, the paracrine effect of stem cells, and other reasons why doctors are adopting stem cells in their clinics.
Benefits of stem cell therapy
Stem cell therapy is an important innovation in medicine because of its regenerative power in the human body. Most disease states are characterized by damaged cells, tissues and organs, which is where stem cell therapy comes in. In stem cell therapy, stem cells are administered into the human body and it replaces the cells damaged by disease or health disorders.
Stem cell research has revealed two major ways of using stem cells to rebuild defective and damaged cells. One of these ways can be seen in procedures like bone marrow transplant, where stem cells are used to replace the damaged cells by engraving, and they then differentiate into the proper cell type. Another mechanism relies on the paracrine effect of stem cells. This procedure of stem cell therapy involves using stem cells isolated from a donor to stimulate the patient’s cells to repair damaged tissues.
Additionally, unlike traditional therapy, stem cells have a wide application. Stem cell therapy is used to manage various degenerative diseases, autoimmune disorders, birth defects, and the research is still ongoing for so many other health conditions where stem cells have shown potential.
Also, there is currently a high demand for aesthetic medicine. Stem cell therapy is a proven alternative to other forms of cosmetology such as plastic surgery. Hence, dermatologists are turning to stem cell therapy to administer anti-aging procedures, skin rejuvenation, hair therapy, micro-needling etc.
The Paracrine effect of stem cells
The paracrine effect of stem cells is one of the most outstanding effects of stem cells. It involves using donor cells to stimulate endogenous repair by harnessing the regenerative power of the human body. It is a mechanism of tissue regeneration that has created new possibilities for managing various conditions using stem cell therapy.
The cells that trigger a paracrine response are; mesenchymal cells, umbilical cord blood, umbilical cord tissue, adipose (fat) tissue and blood cells from a donor’s bone marrow.
The paracrine effect occurs when the donor’s cells send the damaged or defective cells signals to induce self regeneration and repair by secreting some factors and proteins. One of the mechanism by which this paracrine effect is initiated, involves the secretion of cytokines and regulatory proteins by the damaged patient’s cells, these cytokines and proteins act as mediators to stimulate an immune response that attracts the donor cells, this causes the donor cells to release proteins and factors that stimulate the patient’s cells to promote cell proliferation, increase vascularization and blood flow to the areas that needs to heal, while reducing inflammation.
Moreover, research has shown that the paracrine effect of stem cells prevents damaged and diseased cells from dying. They are also therapeutically useful in autoimmune diseases and preventing transplant rejection due to the immune suppression effect they have.
Is stem cell therapy effective?
Doctors are always looking for ways to provide the best possible treatment to their patients, and that is why many clinics are embracing stem cell therapy as a standard, due to its many advantages.
Stem cell therapy is one of the most effective and safest therapy patients can receive, when compared to other existing treatment options. Stem cell therapy is used in promoting patient outcomes in a lot of disease conditions that were previously poorly treated by other alternatives.
Again, as new potentials and ways of applying stem cells are being discovered, doctors are beginning to maximize these benefits in their clinics. Some conditions that are currently treated by stem cells include autoimmune conditions, immunotherapy Car-T cells, chronic obstructive pulmonary disease, neurodegenerative conditions, osteoarthritis, spinal cord injury, aesthetics/anti-aging, sports medicine, autism and multiple sclerosis.
Another reason clinics are adopting stem cell therapy as a standard therapy is because it is easy to administer. A lot of machines such as GCELL which makes the harvesting and processing of stem cells easy and fast, have made the procedures easily adaptable by doctors.
Furthermore, stem cell therapy reduces the treatment and recovery time associated with surgical procedures and other treatment options. This alone is a big factor in why stem cells are becoming a standard therapy in clinics.
Therapeutic uses of stem cells vs traditional medicine
Existing stem cell research has shown how the regenerative effect of stem cells is defining the future of medicine. The major advantage of stem cell therapy over conventional medication-based therapy is its safety. Stem cell therapy is aimed at treating the cause of the disease while traditional medicine targets the symptoms.
Another problem with traditional medical therapy is that it introduces another problem while trying to solve the existing one. As a doctor, you always run the risk of causing harm with each prescription because of various adverse effects that could lead to major organ damage of the kidney, liver etc. On the other hand, patients already know this and they are actively seeking better alternatives, this is why stem cell therapy is fast becoming a standard therapy in clinics.
Moreover, doctors will always be concerned about whether their patients are taking their medications or not. The burden of drug compliance and adherence associated with traditional medical therapy is not always easy to navigate. This is why effective treatment options like stem cell therapy have become a standard therapy in clinics. It only requires the patients having a procedure that repairs and restores damaged cells and tissues in the most natural way.
If you would like to become certified in regenerative medicine using stem cells and other cellular therapy, contact us.
- Published in Blog
How Cellgenic MSCs Revolutionize Regenerative Medicine

Stem Cells are revolutionizing the field of regenerative medicine, due to their intelligence. Once administered into the patient, they are able to identify and target areas of disease and damage. Adimarket’s Mesenchymal Stem Cell Product excretes growth factors, cytokines, and proteins, which all play a key role in the regeneration of tissue. Their anti-inflammatory and immunomodulatory properties mean that it is difficult for them to be rejected by the body. Additionally, they increase blood flow to the vital organs which need it the most.
Many proprietors of MSC products will claim that it is not necessarily important to have a high ratio of viable cells. They claim that it does not matter how many cells are ‘not viable’, or dead, so long as there is a high enough number of viable cells– however, current research has shown that this is not the case. These dead cells are detectable by the immune system, and it is believed that they can create an inflammatory response within the body at the treatment area, which would lower the effectiveness of the regenerative medicine treatments.
This bending of the science is harmful to our industry, which is why knowledgeable purveyors put one thing above all else– consistency. Our cellular concentrations are the same throughout each batch, and we make sure that there is a high ratio of viable cells. All of our samples are independently verified by a third party laboratory, and have been selected for their phenotypic and genotypic profile, characterized for optimum growth and stability. When the proper care is taken, Mesenchymal Stem Cell products have been identified as having the highest output of growth factors and stem cell factors among the current standards of care– as well as properties of angiogenesis, immunomodulation, and the potential for endogenous repair.
Cellgenic has been working for over a decade, constantly reinventing itself and reinforcing the products that we offer with the latest advancements in the field of regenerative medicine. We take every painstaking measure possible to ensure that the cellular samples that our customers use to treat their patients are second to none– this includes the consistent concentrations of our sample, which are the same throughout ensuring that every patient gets the same treatment. We offer the product in 10 million or 30 million live total nucleated cells, where other fabricators would have the same number of total cells. We ensure that every single product that we send out has been tested for low amounts of annexin, which is a cellular protein which serves as a marker for cell death.
All our Mesenchymal Stem Cell products come in 1cc vials cryogenically preserved– they are shipped overnight within the United States, conveniently delivered to your door in the morning. For use, the product is passively thawed between the palms of your hands– and ready to use when your patients are. MSC 10 contains 10 million live cells and is recommended for a single joint, or a small area. However, the MSC pure pro has 30 million live cells,and can be used for larger applications, or for up to three joints in the same patient at the same time.
If you are interested in finding out more about Cellgenic MSCs, you can send an eMail to info@stemcellsgroup.com
- Published in News
Global Stem Cells Group Announces Training in Brussels, Belgium for April 9/10th
The Global Stem Cells Group, a multi-disciplinary community of scientists and physicians that are collaborating to treat diseases and lessen human suffering through the advancement of the field of regenerative medicine has announced plans for a training in Brussels, Belgium on April 9/10th. This course is a long-awaited return to the country of Belgium after months of inactivity in the region brought about by the COVID-19 pandemic. During this time, research proceeded, and shocking discoveries were made that further thrust regenerative medicine into the world’s stage, and as a result the curriculum has been reinforced with the latest in IV therapy and exosome protocols.
This training will be one of the first of 2021, reaffirming the Global Stem Cells Group’s presence in Europe as a key player in the field of regenerative medicine. Members from both Global Stem Cells Group & the International Society for Stem Cell Application’s Brussels Chapter will be there to assist in expanding research for and the practice of regenerative medicine across Europe.
“It’s good to know that the Global pandemic has not been able to stop the progress of business,” Says Benito Novas, founder and CEO of the Global Stem Cells Group, “With reopening happening slowly, but surely, we hope that more and more physicians and clinics will take up the benefits of regenerative medicine.As we continue to train patients with the GCell Machine, ”
This training is intended to teach physicians the value and process behind incorporating regenerative medicine into their own clinical practice. This includes a theoretical portion that goes over basic regenerative medicine biology and its application, but also includes a Hands-On portion in which doctors, in a controlled environment and guided by a team of medical professionals, will have the opportunity to see procedures be performed just a few feet away, and then get the opportunity to try it for themselves.
The Belgium Stem Cell Center is one that is outfitted with the latest technology in regenerative medicine processing, which ensures any students that pass through it receive an education in extraction, isolation, and application of Platelet-Rich Plasma, Adipose, and Bone Marrow-Derived Mesenchymal Stem Cells.
This training will also teach physicians how to utilize the GCell Machine to perform regenerative medicine therapies. GCell is a tissue homogenization device that is revolutionizing the future of regenerative medicine. It is an extremely compact, all-in-one unit that can homogenize and isolate the stem cells from an adipose sample. GCell’s process of homogenizing with a system of precise blades and filtering ensures that the sample can be processed within an hour, with little input from the physician when the machine begins to do its work.
Once the process is over, the end result is a final product that can be administered to patients within an hour after the initial tissue extraction. This is a far cry from the previous, muti-hour long treatments that physicians have grown accustomed to, and the shortened timespan and simplicity of the procedure is something that both doctors and their patients will greatly appreciate.
If you are interested in enrolling in this upcoming event, or to learn more about the different training opportunities available, you can visit us at our training website.
About Global Stem Cells Group
Global Stem Cells Group (GSCG) is a worldwide network that combines seven major medical corporations, each focused on furthering scientific and technological advancements to lead cutting-edge stem cell development, treatments, and training. The united efforts of GSCG’s affiliate companies provide medical practitioners with a one-stop hub for stem cell solutions that adhere to the highest medical standards.
Global Stem Cells Group is a publicly traded company operating under the symbol MSSV. https://finance.yahoo.com/quote/mssv/
Global Stem Cells Group Announces Partnership with Bioscience Cell Factory
Just earlier this week, Global Stem Cells Group has signed a historic agreement with a company known as Bioscience Cell Factory– this Dubai-based healthcare company will allow GSCG to act as their representatives operating in both the Middle East and Latin America. Through the acquisition of proprietary branding rights Global Stem Cells Groups will become committed to promote the widespread use of cellular therapy treatments that utilize Mesenchymal Stem Cells (MSCs).
This partnership is groundbreaking in nature, and promises to lead to a wide proliferation of cellular therapies in both the Middle East and Latin America, two regions that are rapidly developing, with a constantly-advancing standard of medical care. Global Stem Cells Group will be clinically equipped with the highest standards and quality procedures as set forth by the Bioscience Cell Factory, resulting in nothing but the best treatment methods available for patients around the world.

“I’m extremely excited about this partnership,” Said Benito Novas, CEO of the Global Stem Cells Group, “Bioscience Cell Factory is one of the most professional and scientifically-focused teams that I’ve ever had the pleasure of working with– I am looking forward to the start of what will be an extremely beneficial professional relationship that will provide our global reach with the quality of Bioscience’s laboratory,”
Indeed, the two firms are also announcing plans to do research together into the nature of adult Mesenchymal Stem Cells, and the benefits that they hold for the medical field. Through the training of physicians and the handling of cell samples in their laboratory, there are high hopes for the advancement of the field of regenerative medicine research. As one of the representatives of the Bioscience Cell Factory abroad, Global Stem Cells Group will further its goal of being a global leader in the regenerative medicine field.
About Bioscience Cell Factory
Bioscience Clinic is a global healthcare company that is based in Dubai, committed to the running of a laboratory for the banking and use of all sorts of allogeneic and autologous cellular products. Through the proliferation of cellular therapies throughout the world, Bioscience Clinic hopes to advance treatment options for some debilitating diseases that current medical science has been largely unable to target the root causes of.

About Global Stem Cells Group
Global Stem Cells Group (GSCG) is a worldwide network that combines seven major medical corporations, each focused on furthering scientific and technological advancements to lead cutting-edge stem cell development, treatments, and training. The united efforts of GSCG’s affiliate companies provide medical practitioners with a one-stop hub for stem cell solutions that adhere to the highest medical standards.
Global Stem Cells Group is a publicly traded company operating under the symbol MSSV. https://finance.yahoo.com/quote/mssv/
- Published in News
Global Stem Cells Group Announces Training in Cochabamba, Bolivia at the End of November
The Global Stem Cells Group, a multi-disciplinary community of scientists and physicians that are collaborating to treat diseases and lessen human suffering through the advancement of the field of regenerative medicine has announced that the construction of their Stem Cell Center in Cochabamba, Bolivia, has concluded. What’s more, the organization has announced that, in celebration of the facility’s completion, the Center’s inaugural training course will take place at the end of November.
The new facility located in Bolivia is the 35th Stem Cell Center in the world, strengthening the Global Stem Cells Group’s presence worldwide as they seek to expand research for and the
practice of regenerative medicine across the globe. Representatives from the Group and local physicians in the area will both see the impact of this new clinic, which will offer a permanent space within the country where experts in the field can train Bolivian physicians in the latest stem cell research.
“I am very excited for the opportunity to train more Bolivian physicians. We’ve been laying the groundwork for this Stem Cell Center for a very long time, and it feels almost like a dream to have to ready to unveil to the world by the end of November,” Said Benito Novas, founder and CEO of the Global Stem Cells Group, “To be able to have a permanent location in Cochabamba, and to have spots quickly filling up for this training– I think it speaks volumes to the future of regenerative medicine being a bright one,”
This inaugural training is intended to not only teach physicians the value of incorporating regenerative medicine into their own clinics, but to ensure that there is a vast store of all the necessary equipment and supplies that are required for the wide array of cellular therapies that are available for patients around the world– including a highly interactive study session that goes over the extraction, isolation, and application of PRP, Adipose, ad Bone Marrow Stem Cells.
The Center will also provide access to several texts detailing procedure processes and treatment options that are available for reference after the training is completed.
If you are interested in learning more about the Global Stem Cell Group’s Onsite Regenerative Medicine Training, or to book your seat, you can visit us at our training website
About Global Stem Cells Group
Global Stem Cells Group (GSCG) is a worldwide network that combines seven major medical corporations, each focused on furthering scientific and technological advancements to lead cutting-edge stem cell development, treatments, and training. The united efforts of GSCG’s affiliate companies provide medical practitioners with a one-stop hub for stem cell solutions that adhere to the highest medical standards.
Global Stem Cells Group is a publicly traded company operating under the symbol MSSV. https://finance.yahoo.com/quote/mssv/
- Published in News
ISSCA Announces Speaker’s List for 7th Annual Symposium
The International Society for Stem Cells Applications has officially announced and published its list of speakers for its 7th Annual Regenerative Medicine Symposium. The seventh event of its kind, it is another effort from the iSSCA to bring together a network of regenerative medicine practitioners from all over the world. At previous events, hundreds of physicians came to share in their knowledge regarding cellular therapies and the patients whose lives they can change, and the aim of this year is no different– of course, as a reunion of medical professionals, several steps will be taken to ensure proper social distancing measures, as well as frequent opportunities for sanitation.
As with previous editions of the event, the topics discussed and speakers involved have been updated and edited in an effort to reflect the changing of time and the rapid evolution of the field of regenerative medicine. That is why this symposium will focus on Cellular Therapies During and After the Pandemic. Coronavirus has changed life as we know it, but the scientific and medical communities have not stopped researching. In fact, cellular therapies have been an invaluable asset in managing the largest pandemic in modern history, due to their implications in treating respiratory failure and managing some of the complications induced by exposure to COVID-19. This has resulted in accelerated pathways for regulatory approval and increased funding for new regenerative medicine-based clinical trials, which will all be discussed in greater depth at the event.
But the Regenerative Medicine Symposium also provides a valuable networking opportunity for physicians in the Latin American community. “Here, people interested in cellular therapy can find everything they need to get on the right path to helping people with regenerative medicine,” Said Benito Novas, VP of Public Relations, ISSCA, “If you’ve done some research yourself, or really have no idea where to start– this would be the place. We’ve got vendors, instructors, and interview panels with several distinguished researchers,”
About ISSCA
The International Society for Stem Cells Applications (ISSCA) is a multidisciplinary community of scientists and physicians, all of whom aspire to treat diseases and lessen human suffering through advances in science, technology, and the practice of regenerative medicine. Incorporated under the Republic of Korea as a non-profit entity, the ISSCA is focused on promoting excellence and standards in the field of regenerative medicine.
ISSCA bridges the gaps between scientists and practitioners in Regenerative Medicine.
Their code of ethics emphasizes principles of morals and ethical conducts.
At ISSCA, their vision is to take a leadership position in promoting excellence and setting standards in the regenerative medicine fields of publication, research, education, training, and certification. ISSCA serves its members through advancements made to the specialty of regenerative medicine. They aim to encourage more physicians to practice regenerative medicine and make it available to benefit patients both nationally and globally.
For more information, please visit us at www.issca.us or send an email to info@stemcellsgroup.com.
- Published in News
- 1
- 2